1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
#import bevy_pbr::forward_io::VertexOutput;
struct BlackLight {
position: vec3<f32>,
direction: vec3<f32>,
range: f32,
inner_angle: f32,
outer_angle: f32,
}
@group(2) @binding(0) var<storage> lights: array<BlackLight>;
@group(2) @binding(1) var base_texture: texture_2d<f32>;
@group(2) @binding(2) var base_sampler: sampler;
@fragment
fn fragment(
in: VertexOutput,
) -> @location(0) vec4<f32> {
let base_color = textureSample(base_texture, base_sampler, in.uv);
var final_color = vec4f(0.0, 0.0, 0.0, 0.0);
for (var i = u32(0); i < arrayLength(&lights); i = i+1) {
let light = lights[i];
let light_to_fragment_direction = normalize(in.world_position.xyz - light.position);
let light_to_fragment_angle = acos(dot(light.direction, light_to_fragment_direction));
let angle_inner_factor = light.inner_angle / light.outer_angle;
let angle_factor = linear_falloff_radius(light_to_fragment_angle / light.outer_angle, angle_inner_factor);
let light_distance_squared = distance_squared(in.world_position.xyz, light.position);
let distance_factor = inverse_falloff_radius(saturate(light_distance_squared / (light.range * light.range)), 0.5);
final_color = saturate(final_color + base_color * angle_factor * distance_factor);
}
return final_color;
}
fn distance_squared(a: vec3f, b: vec3f) -> f32 {
let vec = a - b;
return dot(vec, vec);
}
fn linear_falloff_radius(factor: f32, radius: f32) -> f32 {
if factor < radius {
return 1.0;
} else {
return 1.0 - (factor - radius) / (1.0 - radius);
}
}
fn inverse_falloff(factor: f32) -> f32 {
return pow(1.0 - factor, 2.0);
}
fn inverse_falloff_radius(factor: f32, radius: f32) -> f32 {
if factor < radius {
return 1.0;
} else {
return inverse_falloff((factor - radius) / (1.0 - radius));
}
}
|