#import bevy_pbr::forward_io::VertexOutput; struct BlackLight { position: vec3, direction: vec3, range: f32, inner_angle: f32, outer_angle: f32, } @group(2) @binding(0) var lights: array; @group(2) @binding(1) var base_texture: texture_2d; @group(2) @binding(2) var base_sampler: sampler; @fragment fn fragment( in: VertexOutput, ) -> @location(0) vec4 { let base_color = textureSample(base_texture, base_sampler, in.uv); var final_color = vec4f(0.0, 0.0, 0.0, 0.0); for (var i = u32(0); i < arrayLength(&lights); i = i+1) { let light = lights[i]; let light_distance_squared = distance_squared(in.world_position.xyz, light.position); let light_arccosine = abs(acos(dot(normalize(light.direction), normalize(in.world_position.xyz - light.position)))); let angle_inner_factor = light.inner_angle/light.outer_angle; final_color = saturate(final_color + base_color * (inverse_falloff_radius(light_distance_squared / (light.range * light.range), 0.5) * inverse_falloff_radius(light_arccosine / light.outer_angle, angle_inner_factor))); } return final_color; } fn distance_squared(a: vec3f, b: vec3f) -> f32 { return pow(a.x - b.x, 2.0) + pow(a.y - b.y, 2.0) + pow(a.z - b.z, 2.0); } fn inverse_falloff(factor: f32) -> f32 { let squared = factor * factor; return (1.0 - squared) / (10 * squared + 1.0); } fn inverse_falloff_radius(factor: f32, radius: f32) -> f32 { if factor < radius { return 1.0; } else { return inverse_falloff((factor - radius) / (1.0 - radius)); } }