#import bevy_pbr::forward_io::VertexOutput; struct BlackLight { position: vec3, direction: vec3, range: f32, inner_angle: f32, outer_angle: f32, } @group(2) @binding(0) var lights: array; @group(2) @binding(1) var base_texture: texture_2d; @group(2) @binding(2) var base_sampler: sampler; @group(2) @binding(3) var base_color: vec4; @fragment fn fragment( in: VertexOutput, ) -> @location(0) vec4 { let base_texture_color = textureSample(base_texture, base_sampler, in.uv); var final_color = vec4f(0.0, 0.0, 0.0, 0.0); for (var i = u32(0); i < arrayLength(&lights); i = i+1) { let light = lights[i]; let light_to_fragment_direction = normalize(in.world_position.xyz - light.position); let light_to_fragment_angle = acos(dot(light.direction, light_to_fragment_direction)); let angle_inner_factor = light.inner_angle / light.outer_angle; let angle_factor = linear_falloff_radius(light_to_fragment_angle / light.outer_angle, angle_inner_factor); let normal_factor = linear_falloff_radius(1.0 - saturate(dot(in.world_normal, -light.direction)), 0.5); let light_distance_squared = distance_squared(in.world_position.xyz, light.position); let distance_factor = inverse_falloff_radius(saturate(light_distance_squared / (light.range * light.range)), 0.5); final_color = saturate(final_color + base_texture_color * angle_factor * distance_factor * normal_factor); } return base_color * final_color; } fn distance_squared(a: vec3f, b: vec3f) -> f32 { let vec = a - b; return dot(vec, vec); } fn linear_falloff_radius(factor: f32, radius: f32) -> f32 { if factor < radius { return 1.0; } else { return 1.0 - (factor - radius) / (1.0 - radius); } } fn inverse_falloff(factor: f32) -> f32 { return pow(1.0 - factor, 2.0); } fn inverse_falloff_radius(factor: f32, radius: f32) -> f32 { if factor < radius { return 1.0; } else { return inverse_falloff((factor - radius) / (1.0 - radius)); } }